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Abstract. An exact and analytic Green function for a spinless particle in interaction with an electromag-
netic plane wave field, expressed in the coordinate gauge is given by Parisi–Wu stochastic quantization
method. We separate the classical calculations from those related to the quantum fluctuation term. We
have used a perturbative treatment relying on phase and configuration spaces formulation.
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1 Introduction

At the present time, there is another approach equivalent
to the standard quantum mechanics which is the stochas-
tic quantization method (SQM) introduced by Parisi and
Wu [1]. This approach enables us to deal with a larger
class of dynamical systems and holds the attention of the
physicists thanks to its practical and technical merits in
field theory. The idea is to combine quantum field theory
and statistical mechanics. Then the path integral for SQM
has been formulated relying on the analogy between Feyn-
man’s measure and the thermal equilibrium distribution
[2]. Briefly, the formulation is mainly based on the intro-
duction of a fictitious time u in addition to the real one
and of a noise which is generally selected white. All the re-
sults of the standard quantum mechanics agree with those
obtained by the SQM (u → ∞) [3]. Thus we can represent
Green’s functions as the correlation functions of a statisti-
cal system in thermal equilibrium. Although this method
appears to be powerful, its application in non-relativistic
quantum mechanics remains rare. To our knowledge, there
is a reduced list of exact calculations of the transition am-
plitude which are related to the quadratic action. Thus,
the propagator was given in the phase and configuration
spaces for the case of the non-relativistic free particle, the
harmonic force, the constant magnetic field and the free
Grassman case [4]. To incorporate the general form of in-
teraction, Nakazato [5] supplemented it by a perturbative
treatment.

Our purpose in this paper is to apply this perturba-
tive treatment of SQM to the case of a relativistic par-
ticle without spin, in interaction with a plane wave field
in coordinate gauge [6]. This problem has already been
investigated via the Schwinger formalism [7] by solving
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the equations of motion in the Heisenberg picture; sec-
ond quantization by using the Furry transformations [8]
and finally, via the path integral framework [9] where it
was shown that the semi-classical calculation is still ex-
act. Here the same problem is reconsidered by using the
stochastic quantization method. The Green’s function cal-
culation will be very simple.

Let us expose the configuration of the plane wave field.
Thus, the quadripotential Aµ is chosen in the coordinate
gauge:

(x − x0)
µ

Aµ (x) = 0, (1)

where x0 is an arbitrary reference point.
The advantage of this gauge choice is that having the

electromagnetic tensor Fµν , the 4-vector potential Aµ is
determined in a unique way following the inversion for-
mula [10]

Aµ (x) =
∫ 1

0
dαα (x − x0)

ν
Fµν (αx) , (2)

with the electromagnetic plane wave tensor having the
form

Fµν (x) = fµνF (ξ) , (3)

where ξ = ηx, F (ξ) is an arbitrary function of ξ and fµν

is a constant antisymmetric tensor verifying with ηµ the
following useful properties:

ηµηµ = 0, ηµfµν = 0, ηµfµν∗ = 0,

f∗
µλfλ

ν = 0, f∗
µλfλ∗

ν = fµλfλ
ν = ηµην , (4)

where f∗ is the dual tensor of f .
In this gauge, the 4-potential Aµ will evidently take

the following form:

Aµ (x) = fµν (x − x0)
ν
K (ξ, ξ0) , (5)
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where K (ξ, ξ0) satisfies the equation

2K + (ξ − ξ0)
dK

dξ
= −F (ξ) , (6)

which has the following solution:

K (ξ, ξ0) = − A (ξ)
ξ − ξ0

+
1

(ξ − ξ0)
2

∫ ξ

ξ0

dηA (η) , (7)

with dA/dξ = F (ξ), x being a point of the four-
dimensional space-time endowed with the metric gµν =
diag (1, −1, −1, −1) and pµ the four-dimensional momen-
tum vector pµ =

(
p0, p1, p2, p3

)
. To simplify the calcula-

tions we choose the reference point x0 equal to xi = x (si).
Let us give the Klein–Gordon equation (KG) for a spin-

less particle interacting with a plane wave field:[
(i∂µ − eAµ)(i∂µ − eAµ) − m2]∆(xf , xi) = δ4(xf − xi),

(8)
where ∆(xf , xi) is the Green’s function and λ is the proper
time [11,7] given by

λ = sf − si; (9)

in this case, the Green’s function ∆(xf , xi) becomes

∆(xf , xi) =
1
2i

∫ ∞

0
dλ exp

[
− im2λ

2

]
K(xf , xi; λ), (10)

where K(xf , xi; λ) is the propagator which satisfies the
following equation:[

i
∂

∂λ
− Ĥ

]
K(xf , xi; λ) = δ (λ) δ4(xf − xi), (11)

in our case, the hamiltonian operator Ĥ is given by Ĥ =
− 1

2 (p̂ − eA)2 with pµ = i∂µ.
In this paper, we show that the exact Green’s func-

tion for a Klein–Gordon particle interacting with a plane
wave can be obtained in coordinate gauge relying on the
stochastic quantization method of Parisi and Wu [4,5]. In
Sect. 2, we review the formulation of the SQM. In Sect. 3,
we treat the problem of the plane wave relying on the
phase space in the framework of SQM, we calculate pertur-
batively the classical action and also find the fluctuation
factor via the Langevin equations iteratively. In Sect. 4,
we rely on the configuration space to calculate once more,
perturbatively, the classical action and the fluctuation fac-
tor, the latter is obtained when we take the equilibrium
limit. Finally, in Sect. 5, the propagator is found relying
on the configuration space and the exact Green’s function
is determined.

2 Review of the stochastic quantization
method

Let us give basic principles of the SQM of Parisi–Wu [1].
We obtain the quantum mechanics results as the thermal

equilibrium limit of a hypothetical stochastic process. The
dynamical variable x (s) is assumed to be a stochastic one
x (s, u), and we introduce a new fictitious time u via the
Langevin equation given by

∂

∂u
x(s, u) = i

δS

δx(s, u)
+ �(s, u), (12)

where S is the classical action of the system and � is the
Gaussian white noise, characterized by

〈�(s, u)〉 = 0,

〈�(s, u)�(s′, u′)〉 = 2δ(s − s′)δ(u − u′). (13)

The Langevin equation (12) is solved under bound-
ary conditions to get x(s, u) as a functional of the
noise. We calculate the equal time correlation function
〈x (s1, u) x (s2, u) ...〉 by using (13) and taking the equilib-
rium limit (u → ∞.).

We can also express in the Fokker–Planck picture the
stochastic average 〈x (s1, u) x (s2, u) ...〉 which is given by
the functional integral

〈x (s1, u) x (s2, u) ...〉 =
∫

Dxx (s1) x (s2) ...P [x; u] ,

(14)
where P [x, u] is the probability distribution which satis-
fies the Fokker–Planck equation

∂

∂u
P [x, u] (15)

=
∫ +∞

−∞
ds

δ
δx(s)

(
δ

δx(s)
− i

δS

δx(s)

)
P [x, u] ,

and is normalized as

〈1〉 =
∫

DxP [x, u] = 1. (16)

Therefore, the stationary solution P is given by
exp

( iS
�

)
as u → ∞ and the correlation function becomes

exactly the same as that defined by the Feynman path
integral formalism:

lim
u→∞〈x (s1, u) x (s2, u) ...〉 (17)

=
∫

Dxx (s1) x (s2) ...eiS∫
DxeiS = 〈0 | Tx (s1) x (s2) ... | 0〉.

Now, let us deduce the transition amplitude [4]. We
evaluate the correlation function under the boundary con-
ditions

x (si, u) = xi, x (sf , u) = xf , (18)

using (18) and the normalization condition (16); as we
take the limit u → ∞, the stochastic average becomes

lim
u→∞〈x (s1, u) x (s 2, u) ...〉

=

∫ x(sf )=xf

x(s1)=xi
Dxx (s1) x (s2) ...eiS∫ x(sf )=xf

x(s1)=xi
DxeiS
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=
〈0 | Tx (s1) x (s2) ... | 0〉

〈xf , sf | xi, si〉 . (19)

We define the state vector by

|xi, si〉 = T exp
[
i
∫ si

Ĥ(s)ds

]
|xi, si〉 , (20)

which is the solution of the following evolution equation:

∂

∂si
|xi, si〉 = iĤ (si) |xi, si〉 , (21)

where Ĥ = − 1
2 (p̂ − eA)2 .

The transition amplitude 〈xf , sf | xi, si〉 can be related
to the Hamiltonian average [4]:

K(xf , xi; λ) = 〈xf , sf | xi, si〉 (22)

= c exp
[
i
∫ si

lim
u−→∞ 〈H(si, u)〉 dsi

]
;

in our case H = − 1
2 (p − eA)2 and the constant c is si

independent. It can be fixed by taking a limit as si = sf

and imposing the condition

lim
λ−→0

〈xf , sf | xi, si〉 = δ(xf − xi), λ = (sf − si) . (23)

Let us proceed in the same way as Hüffel [4]. We carry
out the following decomposition by separating the classical
and quantum variables in the expression of the Hamilto-
nian average. Hence, we obtain two parts, a classical one
independent of the fictitious time u and the other one de-
pendent on the noise � and the time u

〈H(si, u)〉 = 〈Hcl(si)〉 + 〈HQ(si, u)〉 . (24)

In our case, we define the Hamiltonian for a spinless parti-
cle in interaction with an electromagnetic plane wave field
by

H(si, u) = −1
2

[p(si, u) − eA(x(si, u))]2 ; (25)

therefore, the transition amplitude takes the following
form:

〈xf , sf | xi, si〉 (26)

= c exp [iScl] exp
[
i
∫ si

lim
u−→∞ 〈HQ(si, u)〉 dsi

]
,

where the first term, exp [iScl], related to the classical
path, is a consequence of the relation [12]

∂Scl

∂si
= Hcl(si), (27)

and the second exponential factor term contains all the
quantum contributions dependent on the noise and the
fictitious time u. In fact, this result will enormously sim-
plify the transition amplitude calculations.

Finally, owing to the perturbative treatment, we will
calculate the classical action. We use the Langevin equa-
tion and work also iteratively to obtain the average
〈HQ(si, u)〉 .

3 Calculation in the phase space formulation

In order to evaluate the transition amplitude, we rely on
the space phase formulation of the SQM. First, we set two
variables (xµ

Q, pµ
Q) where xµ

Q indicates the deviation of xµ

compared to xµ
cl, the classical path, and pµ

Q the deviation
compared to pµ

cl, the classical momentum,{
xµ = xµ

cl + xµ
Q,

pµ = pµ
cl + pµ

Q;
(28)

next, we decompose the plane wave action as

S = Scl + SQ, (29)

where Scl is the classical action given by

Scl = −
∫ sf

si

ds

[
pcl(s)

dxcl (s)
ds

− 1
2

[pcl(s) − eA(ξ)]2
]

,

(30)
and SQ is the quantum action which includes all the re-
maining terms as in the following expression:

SQ = −
∫ sf

si

ds

[
pcl

dxQ

ds
+ pQ

dxQ

ds

− e (Acl − A (ξ)) (pcl + pQ)

− e2

2
(
A2 (ξ) − A2

cl
) − 1

2
p2

Q

]
, (31)

with the following boundary conditions:

xQ (si) = xQ (sf ) = 0. (32)

We split the Hamiltonian

H = Hcl + HQ, (33)

and obtain one classical term

Hcl = −1
2

(pcl − eAcl)
2
, (34)

and another one, deduced from (33) and (34), which gives
us the remaining terms as the following expression:

HQ = −1
2
p2

Q − pclpQ − e2

2
A2 (ξ) + e (pcl + pQ) A (ξ)

+
e2

2
A2

cl − epclAcl. (35)

We apply the SQM by introducing a new fictitious time
u in the quantum contributions

xQ(s) −→ xQ(s, u), (36)
pQ(s) −→ pQ(s, u); (37)

now, the boundary conditions become

xQ(si, u) = xQ(sf , u) = 0. (38)

Let us calculate the classical action.
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3.1 Classical action calculations

Before performing the calculations in the phase space, we
give the expression of the classical action for a spinless
particle in interaction with an electromagnetic plane wave:

Scl (39)

= −
∫ sf

si

ds

[
pcl(s)

dxcl (s)
ds

− 1
2

(pcl(s) − eAcl(ξ))
2
]

,

where the classical Hamiltonian is given by

Hcl = −1
2

(pcl − eAcl (ξ))
2
. (40)

Now, let us determine the classical path using the
Hamilton equations

ṗclρ =
∂Hcl

∂xρ
= e (pclρ − eAclρ)

dAcl

dxρ
,

ẋclρ = −∂Hcl

∂pρ
= pclρ − eAclρ. (41)

We notice that, using (41), it is easy to obtain the classical
equation of motion

ẍ = eF ẋ, (42)

with the boundary conditions xcl(sf ) = xf , xcl(si) = xi.
In order to have the classical path, we perform the inte-

gration over the time s. The solution is given by iteration
and takes the following form:

x (s) = ẋ (si) s

+ efẋ (si)
(

λ

ξf − ξi

)2 ∫ ξ

ξi

dζ ′ [A (ξ′) − A (ξi)]

+
e2η

2

(
λ

ξf − ξi

)2
(∫ ξ

ξi

dξ′ [A (ξ′) − A (ξi)]
2

)
+ x (si) , (43)

where ζ = ηx and dA/dξ = F (ξ). We have used ηf = 0,
η2 = 0.

In order to obtain the classical path, we have to calcu-
late the related classical action

S = −
∫ sf

si

ds

[
1
2

(
dx

ds

)2

+ eA

(
dx

ds

)]
. (44)

From (42), we can see that the square of the velocity
and its component on the direction η are preserved during
the motion:

ẋ2 (s) = ẋ2 (si) , ηẋ (s) = ηẋ (si) . (45)

Using ηf = 0, η2 = 0 and the properties of the gauge
A (x − xi) = 0, ηA = 0, we obtain the following expres-
sions:

ẋ2 (s) = ẋ2 (si)

=
(

xf − xi

λ

)2

+
e2

(ξf − ξi)
2

[∫ ξf

ξi

dξA (ξ)

]2

− e2

(ξf − ξi)

(∫ ξf

ξi

dξ [A (ξ)]2
)

, (46)

A (x (s)) ẋ (s) = +eK (ξ, ξi)

[∫ ξ

ξi

dζ ′A (ξ′)

]
− e (ξ − ξi) K (ξ, ξi) A (ξ) , (47)

which we will insert in (44); then, we perform the integra-
tion over s, so we obtain the classical action

Scl = − (xf − xi)
2

2λ
+

e2λ

2 (ξf − ξi)
2

[∫ ξf

ξi

dξA (ξ)

]2

− e2λ

2 (ξf − ξi)

∫ ξf

ξi

dξ [A (ξ)]2 . (48)

Let us now calculate the second term which gives us
the fluctuation factor.

3.2 Calculation of 〈HQ(si, u)〉
We have to calculate the fluctuation factor related to the
transition amplitude (26). We perform the calculations
in the phase space formulation relying on the stochastic
quantization method. In this case, the stochastic variables
xQ and pQ satisfy the following Langevin equations:

∂xQ

∂u
= i

[
∂pQ

∂s
+

∂pcl

∂s
+

1
2
e2η

dA2

dξ

−eη
dA

dξ
(pcl + pQ)

]
+ �(s, u),

∂pQ

∂u
= i

[
pQ − ∂xQ

∂s
+ e (Acl − A (ξ))

]
+ χ(s, u),

(49)
where the white noises fulfil

〈�µ(s, u)〉 = 0, 〈χµ(s, u)〉 = 0,

〈�µ(s, u)�ν(s′, u′)〉 = 〈χµ(s, u)χν(s′, u′)〉 (50)
= 2gµ

ν δ(s − s′)δ(u − u′).

The Langevin system (49) amounts to the matrix form

∂

∂u

(
xQ

pQ

)
= i

(
0 ∂

∂s

− ∂
∂s 1

)(
xQ

pQ

)

+

(
ṗcl + 1

2e2η dA2

dξ − eη dA
dξ · (pcl + pQ)

e (Acl − A (ξ))

)

+

(
�(s, u)
χ(s, u)

)
, (51)

which takes the following form:

∂

∂u

−→
X = M

−→
X + −→w + −→v ; (52)



Z. Lehtihet, L. Chetouani: Green’s function for spinless particle via Parisi–Wu stochastic quantization method 247

we indicate by the vector
−→
X

(0)
Q [5] the solution of the free

equation (without field)

∂

∂u

−→
X

(0)
Q (s, u) = M (0)−→X (0)

Q + −→v . (53)

Formally, the solution of (53) is

−→
X

(0)
Q (s, u) =

∫ sf

si

ds′
∫ +∞

−∞
du′G (s, u | s′, u′) −→v (s′, u′) ,

(54)
where G (s, u | s′, u′) is the Green’s function associated to
the free Langevin system (A = 0) and given by

G (s, u | s′, u′) =

(
G11 (s, u | s′, u′) G12 (s, u | s′, u′)
G21 (s, u | s′, u′) G22 (s, u | s′, u′)

)
,

(55)
which satisfy the free Langevin equation(

∂

∂u
− M

)
G (s, u | s′, u′) = δ (s − s′) δ (u − u′) , (56)

with the boundary conditions

G11 (s, u | s′, u′) = G12 (s, u | s′, u′) = 0, (57)
for s or s′ = si, sf or u < u′,

and after a long calculation, we obtain the following Green
matrix elements:

G11 = −θ(u − u′)
2i

λ

∞∑
n=1

sin
nπ

λ
(s − si) sin

nπ

λ
(s′ − si)

×
 1√( 2nπ

λ

)2 + 1
sin


√( 2nπ

λ

)2 + 1

2
(u − u′)


+i cos


√( 2nπ

λ

)2 + 1

2
(u − u′)

 exp
i

2
(u − u′),

(58)

G12 = − θ(u − u′)
4i

λ

∞∑
n=1

nπ

λ
cos

nπ

λ
(s − si) sin

nπ

λ
(s′ − si)

× sin


√( 2nπ

λ

)2 + 1

2
(u − u′)

 exp
i

2
(u − u′),(59)

and

G21 = θ(u − u′)
4i

λ

∞∑
n=1

nπ

λ
sin

nπ

λ
(s − si) cos

nπ

λ
(s′ − si)

× sin


√( 2nπ

λ

)2 + 1

2
(u − u′)

 exp
i

2
(u − u′), (60)

and finally

G22 = θ(u − u′)
2i

λ

∞∑
n=1

sin
nπ

λ
(s − si) sin

nπ

λ
(s′ − si) 1√( 2nπ

λ

)2 + 1
sin


√( 2nπ

λ

)2 + 1

2
(u − u′)


−i cos


√( 2nπ

λ

)2 + 1

2
(u − u′)

 exp
i

2
(u − u′).

(61)

We can easily get the solution of the system (with field)

−→
X (s, u) =

−→
X

(0)
Q (s, u) (62)

+
∫ sf

si

ds′
∫ +∞

−∞
du′G (s, u | s′, u′) −→w (s′, u′) ,

and the solution
−→
X (s, u) can be written with the help of

two basic vectors −→e1 and −→e2 :

−→
X (s, u) =

(
xQ

pQ

)
= −→e1xQ (s, u) + −→e2pQ (s, u) , (63)

the expressions of xQ and pQ are obtained by using

xQ (s, u) = −→e1
+−→

X (s, u) ,

pQ (s, u) = −→e2
+−→

X (s, u) .
(64)

We notice that the field A (ξ) is a function of the devi-
ation xQ(s, u) and consequently the noise. Therefore, the
field has a series expansion in the neighborhood of the
classical path xcl:

A|η(xcl+xQ) =
∑

n

1
n!

(ηxQ)n dn+1A

dξn+1

∣∣∣∣
ξ=ηxcl

, (65)

and by using (65), (50), (64) and the properties η2 = 0,
ηA = 0, we obtain the following averages related to ξQ =
ηxQ:

〈A (ξ)〉 = A (ξcl) ,
〈
A2 (ξ)

〉
= A2 (ξcl) ,

〈pµQAµ (ξ)〉 = 0, 〈pQ〉 = 0, (66)

and

〈
p2

Q

〉
= 2

∫ sf

si

ds′
∫ +∞

−∞
du′

× [
G2

21 (s, u | s′, u′) + G2
22 (s, u | s′, u′)

]
, (67)

and finally, using (35) we obtain

〈HQ〉 = −
∫ sf

si

ds′
∫ +∞

−∞
du′
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× (
G2

21 (s, u | s′, u′) + G2
22 (s, u | s′, u′)

)
; (68)

therefore, we obtain the same result for the Hamiltonian
average in the case of a free particle

〈HQ〉|A �=0 = 〈HQ〉|A=0 . (69)

Consequently, the fluctuation factor depends only on
the Green’s function G (s, u | s′, u′) related to the free
Langevin system and the transition amplitude becomes

〈xf , sf | xi, si〉

= c exp [iScl] exp
[
−i

∫ si

lim
u−→∞

∫ sf

si

ds′
∫ +∞

−∞
du′

× (
G2

21 (s, u | s′, u′) +G2
22 (s, u | s′, u′)

)
dsi

]
. (70)

Now, we fix the constant c by using (23) as λ =
(sf − si) → 0

c =
i

(2π)2
. (71)

3.3 Calculation in the configuration space

Preferably, we rely on the configuration space formalism
for technical reasons. First, we give the Lagrangian for a
spinless particle in interaction with a plane wave field

L [x (s) , ẋ (s)] = −1
2

(
dx

ds

)2

− eA

(
dx

ds

)
, (72)

then we separate the classical part Lcl from the other
quantum one, LQ, which collects all the remaining terms.
It is easy to show that the Lagrangian has the following
form:

〈LQ(si, u)〉 = −1
2

〈
∂xQ(si, u)

∂si

∂xQ(si, u)
∂si

〉
− e

〈
A (ξ)

∣∣
ξ=η(xcl(si)+xQ(si,u))

∂xQ(si, u)
∂si

〉
, (73)

and that according to [12], the expression (73) becomes

〈LQ (si)〉
= −1

2
lim

s1,s2→si

∂s1∂s2〈xQ (s1, u) xQ (s2, u)〉

−e lim
s1,s2−→si

〈
A (ηxcl (s1))

∂xQ(s2, u)
∂s2

〉
. (74)

The Hamiltonian average can be expressed as

〈HQ (si, u)〉 = −
〈

pQ (si, u)
∂xQ(si, u)

∂si

〉
+ 〈LQ (si, u)〉, (75)

in addition to the fact that the stochastic quantum vari-
ables (xQ, pQ) are always governed by the Langevin sys-
tem given in (49) and satisfy the following boundary con-
ditions:

xQ(si, u) = xQ(sf , u) = 0. (76)

At this level, we can show that the second term of
the expression (74) vanishes when we use the field series
expansion given in expression (65), the averages (66) and
also the properties of the gauge and the white noise. Then
we get the Lagrangian average

〈LQ (si, u)〉 = −1
2

lim
s1,s2→si

∂s1∂s2〈xQ (s1, u) xQ (s2, u)〉.
(77)

Now, the transition to a configuration space is carried
out by using the Langevin equation of the momentum

∂pQ (si, u)
∂u

= i
(

∂xQ (si, u)
∂si

+
∂HQ

∂pQ (si, u)

)
+ χ(si, u), (78)

in addition to the results in (35), (50), (66) and the free
Green’s matrix as we take the limit u → ∞, we finally
obtain

lim
u→∞

[〈
∂xQ (s′

i, u)
∂si

pQ (si, u)
〉

+
〈

∂xQ (s′
i, u)

∂si

∂xQ (si, u)
∂si

〉]
= 0, (79)

(79) enables us to express the Hamiltonian average in the
coordinate space according to the two-point correlation
function 〈xQ (s1, u) xQ (s2, u)〉:

lim
u→∞〈HQ (si)〉

=
1
2

lim
s1,s2→si

∂s1∂s2 lim
u→∞〈xQ (s1, u) xQ (s2, u)〉. (80)

Then, the expression of the propagator relating to the
plane wave is the same one as given by [4]

〈xf , sf | xi, si〉
= c exp [iScl] exp

[
i
2

∫ si

lim
s1,s2→ssi

∂

∂s1

∂

∂s1
(81)

× lim
u→∞ 〈xQ(s1, u)xQ(s2, u)〉 dsi

]
,

where c is the constant given by (71). Thus, it remains to
calculate the classical action Scl and the two-point corre-
lation function 〈xQ (s1, u) xQ (s2, u)〉.

3.4 Classical action calculation

Let us calculate the action according to the classical path

S = −
∫ sf

si

ds

[
1
2

(
dx

ds

)2

+ eA

(
dx

ds

)]
, (82)

we obtain by using the Euler–Lagrange equation the fol-
lowing expression:

d
ds

(ẋρ + eAρ) = eẋµ∂ρAµ, (83)
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which gives us the equation of motion

ẍ = eF ẋ. (84)

We perform the first integration and obtain, using (83),
the velocity given by

ẋ (s) = ẋ (si) + e

∫ s

si

ds′f
dA

dξ′ ẋ (s′) ; (85)

then, we use an iterative treatment and obtain the solution
in the same manner as in the phase space, with the help of
the gauge properties ηf = 0, η2 = 0 and dA/dξ = F (ξ).
Finally, we find the expression of the classical action

Scl = − (xf − xi)
2

2λ
+

e2λ

2 (ξf − ξi)
2

[∫ ξf

ξi

dξA (ξ)

]2

− e2 λ

2 (ξf − ξi)

∫ ξf

ξi

dξ [A (ξ)]2 . (86)

3.5 Calculation of 〈HQ(si, u)〉

First we separate the classical path xcl from x
(x = xcl + y), and the quantum action (SQ = S − Scl) is
now expressed as

SQ = −
∫ sf

si

ds

[
1
2

(
dy

ds

)2

+
(

dxcl

ds

)(
dy

ds

)
(87)

+eA(ξ)
(

dxcl

ds
+

dy

ds

)
− eA(ξcl) · dxcl

ds

]
.

Next, we add the fictitious time u to the stochastic vari-
able y, and the Langevin equation which governs y (s, u)
takes the following form:

∂y (s, u)
∂u

= i
∂2

∂s2 (y + xcl) − ieη
dA (ξ)

dζ

∣∣∣∣
ξ=η(xcl+xQ)

(ẋcl + ẏ)

+ie
∂A (ξ)

∂s
+ �(s, u), (88)

with the following properties for the white noise:{
〈�µ(s, u)〉 = 0,

〈�µ(s, u)�ν(s′, u′)〉 = 2gµνδ(s − s′)δ(u − u′).
(89)

Let us determine the solution of the Langevin equa-
tion. We can express it by a free one (without field)
y(0)(s, u) and a remaining term y′(s, u)

y(s, u) = y(0)(s, u) + y′(s, u), (90)

and the free solution can be decomposed as

y(0)(s, u) = y
(0)
cl (s) + y

(0)
Q (s, u), (91)

where y
(0)
cl (s) is the solution of the classical equation

d2

ds2 y
(0)
cl (s) = 0, (92)

directly, by using the boundary conditions y
(0)
cl (si) =

y
(0)
cl (sf ) = 0, and the free classical solution is given by

y
(0)
cl (s) = 0. (93)

In addition, the free deviation y
(0)
Q (s, u) is the solution

of the following Langevin equation:

∂

∂u
y
(0)
Q (s, u) = i

∂2

∂s2 y
(0)
Q (s, u) + �(s, u), (94)

with the boundary conditions y
(0)
Q (si, u) = y

(0)
Q (sf , u) = 0.

We can also note by G(0)(s, s′; u − u′) the free Green’s
solution of the following equation:(

∂

∂u
+

∂2

∂s2

)
G(0)(s, s′; u−u′) = δ(s− s′)δ(u−u′), (95)

with the boundary conditions

G(0)(s, s′; u − u′) = 0,

for s or s′ = si, sf or u < u′;
(96)

we calculate the free Green’s function by using (95) and
(96) and get the final expression

G(0)(s, s′; u − u′)

= θ(u − u′)
2
λ

∞∑
n=1

sin
nπ
λ

(s − si) sin
nπ
λ

(s′ − si)

× exp
[
in2π2

λ2 (u − u′)
]

. (97)

Now we use (94) and the expression (95) to get the
free solution

y
(0)
Q (s, u) =

∫ sf

si

ds′
∫ +∞

−∞
du′G(0)(s, s′; u − u′)�(s′, u′);

(98)
therefore, the solution of the Langevin (88) in the presence
of the plane wave Aµ (x) will take the following form:

y(s, u) = y
(0)
Q (s, u) (99)

+ i
∫ sf

si

ds′
∫ +∞

−∞
du′G(0)(s, s′; u − u′)

×
[
ẍcl (s′) + e

∂A

∂s′ − eη
dA

dζ ′ (ẋcl (s′) + ẏ (s′, u′))
]

.

We can notice that y (s, u) still depends on y (s′, u′);
hence, we perform the calculations by an iterative treat-
ment. Thanks to the properties η2 = 0, ηA = 0 and the
fact that

ηẍcl = 0, ηẏ (s, u) = ηẏ0
Q (s, u) , (100)
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the solution y(s, u) becomes

y(s, u) = y
(0)
Q (s, u)

+ i
∫ sf

si

ds′
∫ +∞

−∞
du′G(0)(s, s′; u − u′)

×
[
ẍcl (s

′) + e
dA

dζ ′

∣∣∣∣
η(x+y)

η
(
ẋcl (s′) + ẏ

(0)
Q (s′, u′)

)]

− ieη
∫ sf

si

ds′
∫ +∞

−∞
du′G(0)(s, s′; u − u′)

dA

dξ′

∣∣∣∣
η(x+y)

×
[
ẋcl (s′) +ẏ

(0)
Q (s′, u′)

+ i
∫ sf

si

ds′′
∫ +∞

−∞
du′′ ∂

∂s′ G
(0)(s′, s′′; u′ − u′′)

×
(

ẍcl (s′′) + e
∂A

∂s′′

)]
. (101)

The two-point correlation function 〈y(s1, u1).y(s2, u2)〉
is also calculated by using the properties of the gauge
η2 = 0, ηA = 0, ηẍ = 0, (89) and (65). In addition we
can show that

ηy (s, u) = ηy
(0)
Q (s, u) , (102)

and we deduce that the two-point correlation function in
the presence of the field is the same one in the case of a
free particle:

〈y(s1, u1)y(s2, u2)〉 =
〈
y
(0)
Q (s1, u1)y

(0)
Q (s2, u2)

〉
. (103)

First, we use (97) and perform the integration, and we
obtain〈

y
(0)
Q (s1, u1)y

(0)
Q (s2, u2)

〉
=

∑
n

8iλ
n2π2 sin

nπ
λ

(s1 − si) (104)

×
(

sin
nπ
λ

(s2 − si) exp
[
in2π2

λ2 |u1 − u2|
])

;

next, we take the limit (u1 = u2 → ∞) and use the for-
mula [13]

∞∑
n=1

cos nx

n2 =
π2

6
− πx

2
+

x2

4
, [0 ≤ x ≤ 2π] ; (105)

hence, the free two-point correlation function becomes

lim
u1=u2→∞

〈
y
(0)
Q (s1, u1)y

(0)
Q (s2, u2)

〉
(106)

=
4i
λ

[
(s2 − si)λ − (

s1s2 − si(s1 + s2) + s2
i

)]
.

Now, we impose (λ = sf − si) and obtain the two-
point correlation function at the equilibrium (u → ∞)

lim
u→∞〈y(s1, u1)y(s2, u2)〉 =

4i
λ

(s2 − si)(sf − s1), (107)

and derive over the time s1 and s2 in (80), in order
to obtain the Hamiltonian average as we take the limit
(u → ∞) . Finally, the calculation is simple and gives the
following result:

lim
u→∞〈HQ(si, u)〉

=
1
2

lim
s1,s2→si

∂

∂s1

∂

∂s2
lim

u→∞〈y(s1, u1)y(s2, u2)〉

= −2i
λ

. (108)

4 Green’s function calculation

Owing to the configuration space, the calculations become
easier, and we insert the results (86) and (71), and inte-
grate over s using (26) and (108); thus, we obtain the
propagator expression

K(xf , xi; λ) =
c

λ2 exp

{
− im2λ

2
− i (xf − xi)

2

2λ

+
ie2λ

2 (ξf − ξi)
2

[∫ ξf

ξi

dξA (ξ)

]2

− ie2 λ

2 (ξf − ξi)

∫ ξf

ξi

dξ [A (ξ)]2
}

; (109)

finally, we insert these results in the expression (10).
Therefore, we obtain the exact result for the Green’s func-
tion in the case of a spinless particle in interaction with a
plane wave field

�(xf , xi) =
1

8π2

∫ ∞

0

dλ

λ2 exp

{
− im2λ

2
− i (xf − xi)

2

2λ

+
ie2λ

2 (ξf − ξi)
2

[∫ ξf

ξi

dξA (ξ )

]2

− ie2 λ

2 (ξf − ξi)

∫ ξf

ξi

dξ [A (ξ)]2
}

. (110)

This result is equivalent to that given in [9] through
the path integral approach.

5 Conclusion

In this paper, we have been able to calculate, within the
framework of the stochastic quantization method, the ex-
act and analytic Green function for a spinless particle in
interaction with an electromagnetic plane wave field ex-
pressed in coordinate gauge using a perturbative treat-
ment. We have solved iteratively the Langevin equation
and obtained its solution under given boundary condi-
tions. We notice that we have used in our work both
phase and configuration spaces and applied a perturba-
tive treatment. The calculations have been simplified us-
ing separately the classical and quantum contributions.
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Consequently, this technique has constituted the most in-
teresting stage in SQM, where we have collected all the
quantum fluctuations in the same exponential propaga-
tor factor. Therefore, the exact expression of the Green’s
function has been determined when we take the equilib-
rium limit. Finally, this result agrees with that obtained
via the path integral approach.
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